Optimal implementation of the Shadow Hybrid Monte Carlo method
نویسندگان
چکیده
Abstract. keywords: Sampling methods; Hybrid Monte Carlo; Symplectic integrator; Shadow Hamiltonian; Conformational sampling.
منابع مشابه
Separable shadow hybrid Monte Carlo method
Hybrid Monte Carlo (HMC) is a rigorous sampling method that uses molecular dynamics as a global Monte Carlo move. The acceptance rate of HMC decays exponentially with system size. The Shadow Hybrid Monte Carlo (SHMC) was previously introduced to overcome this performance degradation by sampling instead from the shadow Hamiltonian defined for MD when using a symplectic integrator. We show that S...
متن کاملOptimal Scheduling of Battery Energy Storage System in Distribution Network Considering Uncertainties using hybrid Monte Carlo- Genetic Approach
This paper proposes a novel hybrid Monte Carlo simulation-genetic approach (MCS-GA) for optimal operation of a distribution network considering renewable energy generation systems (REGSs) and battery energy storage systems (BESSs). The aim of this paper is to design an optimal charging /discharging scheduling of BESSs so that the total daily profit of distribution company (Disco) can be maximiz...
متن کاملA two-stage stochastic programming model for the optimal sizing of hybrid PV/diesel/battery in hybrid electric ship system
Ships play the major role in bulk transportation and they need their special energy system. This paper proposes a stochastic programing method for optimal sizing of a hybrid ship power system with energy storage system (ESS), photovoltaic power (PV) and diesel generator. To account for uncertainties, in this study a two-stage stochastic mixed-integer non-linear programing is used to model the o...
متن کاملA separable shadow Hamiltonian hybrid Monte Carlo method.
Hybrid Monte Carlo (HMC) is a rigorous sampling method that uses molecular dynamics (MD) as a global Monte Carlo move. The acceptance rate of HMC decays exponentially with system size. The shadow hybrid Monte Carlo (SHMC) was previously introduced to reduce this performance degradation by sampling instead from the shadow Hamiltonian defined for MD when using a symplectic integrator. SHMC's perf...
متن کاملNew Hybrid Monte Carlo Methods for Efficient Sampling: from Physics to Biology and Statistics
We introduce a class of novel hybrid methods for detailed simulations of large complex systems in physics, biology, materials science and statistics. These generalized shadow Hybrid Monte Carlo (GSHMC) methods combine the advantages of stochastic and deterministic simulation techniques. They utilize a partial momentum update to retain some of the dynamical information, employ modified Hamiltoni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006